Friday worksheet - 1a Excess reagents and pH

1) 230 ml of $0.753 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ is added to 172 mL of $0.570 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ What is the resulting pH of the final solution at $25^{\circ} \mathrm{C}$?

Step 1 write the chemical equation for this reaction
$3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})=>\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Step 2 Find the mols of each reactant
mols of $\mathrm{Mg}(\mathrm{OH})_{2}=C \times V=0.753 \times 0.230=0.1732$
mols of $\mathrm{H}_{3} \mathrm{PO}_{4}=C \times V=0.570 \times 0.172=0.0980$
Step 3 find the limiting reactant
If all the $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacted we would need $1.5 \times 0.0980(0.147) \mathrm{mol}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$
We have 0.1732 mol of $\mathrm{Mg}(\mathrm{OH})_{2}$ clearly too much, hence it is in excess. The limiting reactant is $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Step 4 Calculate the mol of $\mathrm{Mg}(\mathrm{OH})_{2}$ in excess.
$0.173-0.147=.0 .026$
Step 5 calculate the mol of OH^{-}present after the reaction.
$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})=>\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
So for 0.026 mol of $\mathrm{Mg}(\mathrm{OH})_{2}$ we will have $2 \times 0.026(0.052) \mathrm{mol}^{2} \mathrm{OH}^{-}$
Step 6 Calculate the [OH^{-}] present
$\left[\mathrm{OH}^{-}\right]=n / V=0.052 / 0.402=0.13=10^{-0.89}$
Step 7 find the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14.00} / 10^{-0.89}=10^{-13.11}$
Step 8 find the pH $p H=13.1$

